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Axial dispersion in a channel with oscillating walls 
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An analysis is made of solute transport through a fluid within a long, but finite, channel 
or pipe whose walls remain parallel but oscillate transversely. When the fluid is viscous, 
the wall motion causes steady streaming. Axial dispersion of solute is calculated over 
a wide parameter range, and mean longitudinal transport is found to be greatly 
enhanced when the steady-streaming Reynolds number is much greater than unity. The 
results are applied to low-volume high-frequency ventilation of the human lung. 

1. Introduction 
The motivation for the present work is to improve understanding of gas transport 

in the airways of the lung. These are short, dichotomously (but asymmetrically) 
branching tubes, through which air is carried between the mouth and the terminal gas 
exchanging units, the alveoli. There are on average about twenty airway generations in 
the adult human lung, fewer on some pathways and more on others. The mean 
diameter and length of the airways decrease with distance from the trachea (the largest 
airway), although their total cross-sectional area increases rapidly with distance. The 
larger airways are lined with cartilage, so are less compliant than the smaller ones, 
whose diameter varies substantially during a breath. 

It has been found (e.g. Bohn et al. 1980; Slutsky et al. 1980) that effective gas 
exchange in dogs can be maintained with tidal volumes that are significantly less than 
the volume of the conducting airway system, but only if the frequency of ventilation 
is substantially increased. Frequencies of up to 30 Hz are used in man, as compared 
with the normal resting breathing frequency of 0.25 Hz. This technique of artificial 
ventilation is called high-frequency ventilation (HFV). 

Gas transport at low volumes and high frequencies may be enhanced by ventilation 
of alveoli supplied by short pathways and by ‘pendelluft’ (the sloshing of gas between 
neighbouring airways due to a mismatch in impedance), as discussed in the review by 
Slutsky, Kamm & Drazen (1985), but neither is sufficient to account for the fact that 
HFV can maintain adequate levels of oxygen and carbon dioxide in man at very low 
tidal volumes. It is clear that the interaction of diffusion and the highly unsteady flow 
in the conducting airways must be taken into account (Drazen, Kamm & Slutsky 
1984). 

The transport of a marker or passive solute in an incompressible fluid is governed 
by the advection-diffusion equation 

Cf+Z2M = K W ,  (1.1) 

where is the concentration, ti is the fluid velocity and K is the molecular diffusivity 
of the solute in the fluid. (A caret over a variable or operator signifies that it is 
dimensional; the same variable will be used for non-dimensional quantities, but with 
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the caret removed.) Suitable boundary conditions must be applied. If B is a fixed solid 
impermeable boundary with unit normal n, then 

n.+C=o on B. (1 4 
In a finite tube, end conditions must also be considered. Typically, the concentration 
6 or its axial gradient C2 will be specified. The problem of choosing appropriate end 
conditions is discussed in $3. 

The dispersion of a bolus of solute in a long rigid cylindrical tube was studied by 
Taylor (1953) and Aris (1956), who generalized Taylor’s results. They concluded that 
if Uo is the mean axial velocity, z” = R - U, f, anduo is half of the typical tube width then 
the cross-sectionally averaged concentration, e, satisfies 

- - 
1 * 

c, = K,ff cii, (1.3) 

where K,ff = 41 + yP2), (1 -4) 
P = U, a o / K  is the PCclet number (the ratio of advective to diffusive terms in (1. l)), and 
y is a positive number dependent upon the geometry of the tube (y = & for a rigid 
cylindrical tube; y = 6 for a parallel-sided, rigid two-dimensional channel). This 
result applies asymptotically, as f;. co, and is independent of the initial distribution of 
solute. 

Following Taylor’s 1953 paper, many different dispersion problems have been 
analysed. Dispersion in a long rigid straight tube or channel when the flow is driven 
by an oscillatory axial pressure gradient is particularly relevant to the lung, and has 
been studied by Harris & Goren (1967), Chatwin (1975), and Watson (1983). Their 
results have been experimentally tested by Joshi et al. (1983), and were found to give 
reasonable agreement with experiment. The effects of tube curvature have been 
studied, both for steady flow (Erdogan & Chatwin 1967; Nunge, Lin & Gill 1972; 
Johnson & Kamm 1986) and for oscillatory flow (Eckmann & Grotberg 1988; Pedley 
& Kamm 1988; Sharp et al. 1991). In this case the velocity is not everywhere parallel 
to the tube axis, and the presence of secondary motions means that the fluid can, in 
certain circumstances, be transported across the tube cross-section more rapidly than 
by diffusion alone. In particular, a purely oscillatory axial flow generates transverse 
steady streaming (Lyne 1971). 

In the above problems, the tube is uniform and the flow fully developed, so no axial 
steady streaming occurs, and the mean longitudinal solute flux consists of steady axial 
diffusion together a contribution from the interaction between the unsteady axial 
velocity and the unsteady concentration distribution. One non-uniformity found in 
airways is taper. The effect of oscillatory flow and gradual taper upon dispersion in a 
rigid axisymmetric tube has been studied by Godleski & Grotberg (1988). The non- 
uniformity of the tube requires the existence of transverse velocity components, which 
contribute to lateral mixing. There is also an axial component of steady-streaming 
velocity, which one might suppose would contribute to the axial solute flux. However, 
this is not the case (to leading order); the zero-order concentration field is uniform 
across the cross-section and the cross-sectional average of the steady streaming is zero, 
so there is no net axial advection of solute by the steady streaming. 

The problem of transport during volume-cycled oscillatory flow in a thin-walled 
viscoelastic tube has been treated by Dragon & Grotberg (1991), who found that the 
solute flux is reduced as wall compliance increases, so that the dispersion produced is 
less than in a rigid tube. For soft tubes, the optimal dispersion is achieved when the 
phase difference between the wall motion and the forced motion of the fluid is 
minimized. 
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In the present paper, we consider how pulsation of the tube walls affects axial 
transport. Our analysis will be restricted to the case of the mixing of one gas in another, 
for which the Schmidt number CT = V / K  is 0(1) ( u  being the kinematic viscosity), but 
may readily be extended to large CT and applied to the mixing of solutes in liquids. We 
examine the effect of wall oscillations by studying a model problem in a finite tube, 
whose wall remains rigid and parallel whilst oscillating transversely. The principal 
conclusion of the present work, in contrast to those of Godleski & Grotberg and 
Dragon & Grotberg, will be that the axial steady streaming dominates the dispersion 
process when the Pkclet number based upon the steady streaming velocity is sufficiently 
large. 

2. Formulation of the model problem 
We now investigate the way in which transverse parallel oscillations of a tube wall 

generate a flow which enhances solute dispersion. The simplest geometry in which to 
analyse such dispersion is a two-dimensional channel. Accordingly, the main discussion 
in each section treats the two-dimensional problem. The corresponding results for an 
axisymmetric tube are calculated similarly, and are presented without derivation 
(details may be obtained from the authors). 

We study dispersion in a long straight channel with a large tank of fluid at each end 
(figure 1). The channel walls are at J7 = +ci(t^), where 

It is assumed that 6 Q 1. The ends of the channel are at R = a, 1 and R = a, L, where 
Z < 0 < L and L-Z + 1. Secomb (1978) has analysed the flow in an infinite channel 
whose walls oscillate according to (2.1). It is reasonable to assume that the flow in a 
long finite channel will be very closely approximated by Secomb flow away from the 
channel ends. Since it is not the purpose of this work to study entry or exit effects upon 
the dispersion, we will assume that the flow in the channel is everywhere equal to that 
calculated by Secomb. 

The tanks at f = a, 1 and f = a, L contain fluid with solute concentrations eL and eL 
respectively. Without loss of generality, we suppose that cL > cL. The fluid within each 
tank is well mixed, and the tanks are assumed to be so large that the tank 
concentrations do not change noticeably over a cycle. 

We look for solutions of the advection-diffusion equation which are periodic, so that 
any transients resulting from a particular choice of initial conditions will have been 
attenuated. In particular, when there is no fluid flow and the walls are fixed at J7 = a,, 
the concentration will be steady, varying linearly with 2:  

d(f) = a,(l +ECOSW~).  (2.1) 

In this case, the solute flux across a cross-section (i.e. a plane x =  constant) is 
indeDendent of time : 

% is the solute flux per unit channel breadth in the positive R-direction. 
When there is a fluid flow, the time-averaged flux across a cross-section is 

18 FLM 249 
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; E=-b(t^) ? 

ez e L  

where ii is the $-component of velocity. It turns out that the dispersion produced by 
transverse parallel-wall oscillation is not a Gaussian process, even in a time-averaged 
sense, so it is not possible to model it by a one-dimensional diffusion equation with an 
effective diffusivity. However, the relative increase in transport across a cross-section, 

9.2 = @/q)-l ,  (2 .5)  
is a measure of the effect of the fluid flow on the transport of solute. The use of to 
characterize the dispersion is consistent with Watson (1983). 

In Secomb's (1978) solution, the transverse velocity 6, equal to + 8 ~  at $ = +S(O, is 
independent of i. Therefore (from continuity) the axial velocity zi is linear in i and 
(from the 2-momentum equation) the pressure gradient is quadratic, that is 

zi(a,p, i) = tio($, t")+2ii1($, i), 
i(a,p, f)  = a " z ( i ) + i j q f i + f i o ( j ,  t") 

(2.6) 
(2.7) 

(d,  and p ,  are functions of t^ only, from the $-momentum equation). Different powers 
of 2 in the Navier-Stokes equations lead to a set of equations for Go, ii,, 6, go, a, and 
fi2 in terms of t" and $. However, zi,, d, and fi2 can be determined independently of the 
other variables, and will be referred to as the 'wall-driven flow'. The 2-independent 
axial velocity zi,, although influenced by zi, and 0, can be regarded as driven by the f- 
independent part of the pressure gradient, PI, and is zero if a, is zero. In this paper we 
analyse dispersion in wall-driven flow, with ti, = 0. The problem with a pressure-driven 
flow will be studied in a subsequent paper. 

It is helpful to choose a frame of reference in which the walls are fixed. Accordingly, 
Secomb chose the (non-dimensional) transverse variable to be 

3 = j/Ci(f). (2.8) 
The other dimensionless variables are taken to be 

the only dimensionless constant appearing in the equations is the Womersley number 

Assuming that the amplitude parameter, e, was small, Secomb expanded all variables 

(2.10) 

a = fZ,(W/V)+. 

in powers of c, with appropriate time-dependence at each order; for example, 

v(r, t )  = e Re {v l l (y )  eit} + e2[vZo(y) + Re ( ~ ~ ' ( 7 )  eZit}] + O(c3). 
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FIGURE 2. Steady streaming when a b 1. 

The variables u, and q5z have expansions of the same form, and the same superscript 
notation will be used throughout. The time-independent terms of O(2) represent the 
steady streaming, which arises from the convective inertia term in an x-dependent flow. 

When the steady-streaming Reynolds number R, = c2a2 is much less than unity, it 
is possible to carry out a uniform series expansion of the governing equations by 
comparing powers of 6.  The resulting hierarchy of ordinary differential equations for 
uy(r), zP(7) and q$/ is solved sequentially. We will require explicit expressions for the 
axial oscillatory flow uil and the axial steady streaming u?O in order to determine the 
leading-order contribution to the solute dispersion. As calculated by Secomb, these are 

(2.1 1) 

+8icoshPqcoshp+3(~~- l)sinhp[(ll/P)cosh/?-3 sinhp]}, (2.12) 

where we use the notation /? = ((1 +i)/d2) a, D = coshp-(l/p) sinhp; an overbar 
denotes the complex conjugate of a variable or parameter. The Fourier series 
representation of u:' will also be found useful : 

ui' = (i/D) (cosh / 3 ~  - cosh p), 
u;' = (1/8DD)Re(2sinhpq sinhpq-6sinhBsinhp+4q sinhpqsinhp 

(2.13) 

In addition, we shall need the leading-order term in the expansion for q52: 

&' = - (1 /2D)  Gosh /3. (2.14) 

As a becomes large, variations in the axial oscillatory flow become confined to Stokes 
layers at the walls. The steady streaming is driven by the flow in the Stokes layers, and 
is directed towards x = 0 close to the walls and away from x = 0 in the centre of the 
channel (figure 2). 

When R, > 1 as s+O, the convective inertia of the steady streaming becomes 
comparable with the mean viscous force, so that the series solution above becomes 

18-2 
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non-uniform. In this case, Secomb wrote a = Ne-('+'), where c 2 0 and N = O(1) as 
6 + 0; the equations of motion are now singular, but may be solved using a boundary- 
layer analysis. The variables ul, o and q5z are written as the sum of the solution for an 
inviscid fluid and the viscous perturbation : 

ul(y, t )  = ---az%(T, at t), v(y, t )  = a , 7 + a 3 ~ ( 7 ,  t), @z = att/2a-a;/a2+5J,. a 
(2.1 5 a-c) 

The equation for the new dependent variable, F(y, t), can be solved separately in the 
core and in the Stokes layers by expansion in powers of E ,  and the solutions are 
matched in the usual way. It turns out that P, F22 and F31 are zero within the core, 
and the equation determining the steady streaming in the core has the analytic solution 

F20 = - (3/47c) sin n7 (2.16) 

for c > 0. This solution was discussed in detail by Secomb (1978), who also solved the 
problem c = 0 numerically. The c = 0 solution matches the R, -% 1 solution as N+O,  
and matches the c > 0 solution as N - t  co. We will use Secomb's results in our analysis 
of dispersion in the limiting cases R, 6 1 and R, % 1 (c > 0). We will not treat the case 
R, = O ( l ) ( c  = 0)  explicitly, but we note from Secomb (1978) that the velocity profile 
when R, = O(1) is similar in shape and magnitude to the profile when R, 

The (non-dimensional) instantaneous volume flux (per unit breadth) Q(x, t )  across 
a cross-section may be calculated from the continuity equation 

1 .  

u ,+(l /a)o,  = 0, (2.17) 

together with the kinematic boundary conditions and is found to be 

Q(x,  t )  = 2ex sin t .  (2.18) 

3. Equation and boundary conditions 

advection according to (l . l) ,  which may be written 
We assume that the solute is passive and is transported by molecular diffusion and 

using the non-dimensional variables introduced in 92, together with the non- 
dimensionalized concentration 

L-I [&Lei - 16,] 
@(X, 7, t )  = 1 

C, - L-E . 

This choice of non-dimensional concentration results in a unit concentration gradient 
when there is no flow; the equilibrium solute distribution is 

8 = X .  (3.3) 

The fluid in the tanks at x = I and L has concentration I and L respectively, so for a 
long channel, 1/31 will be large, at least at one end. 
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The wall-driven velocity field can be written as a power series in eeit, so we expect 
that the time-periodic solution of (3.1) will be of the form 

8(x, 7, t )  = Boo(x, 7) + 6 Re {811(x, 7) eit} + 2 [ 1 9 ~ ~ ( x ,  7) + Re {OZ2(x, 7) eZit}] + O(e3). 
(3.4) 

The solution is determined by the application of suitable boundary conditions. The 
walls at 7 = & 1 are solid and impermeable; hence 

8?=0 at y = f l .  (3.5) 

The question of suitable conditions at the ends x = 1 and L is more difficult; various 
end conditions have been adopted by workers in the field. Much of the work on shear 
dispersion has been applied to chemical flow reactors, in which it has usually been 
assumed that the flow is steady and x-independent, and that a one-dimensional 
advection-reaction-diffusion equation is a valid model (Danckwerts 1953 ; Wehner & 
Wilhelm 1956; Deckwer & Mahlmann 1976). End conditions suitable for the lung 
during normal ventilation have been proposed by Butler (1977). 

Smith (1988) found that, when advection dominates molecular diffusion, the one- 
dimensional model equation is inadequate close to any rapid transition in parameters, 
so that the entry and exit conditions must be determined from the full three- 
dimensional advection-reaction-diffusion equation. He derived such conditions for the 
one-dimensional model equation and the solution of that was in good agreement with 
the solution of the full three-dimensional problem sufficiently far downstream. 
However, for slowly varying or steady flows, and no reaction, the conditions proposed 
by Danckwerts proved to be appropriate. Since we ignore the details of the velocity 
field at the junctions between the channel and the tanks, we are also justified in using 
end conditions similar to those of Danckwerts, as set out below. 

When both terms on the right-hand side of (3.1) are typically small compared with 
those on the left-hand side, advection is the chief mechanism of solute transport. The 
leading-order equation for the concentration is hyperbolic, and may be solved by the 
method of characteristics. We assume that, in these circumstances, no boundary layers 
exist at the ends. During inflow, the direction of propagation is from each tank into the 
channel, so we expect that the concentration at x = L will equal that in the tank. 
During outflow, the direction of propagation is reversed, and so the concentration at 
x = L is determined by the concentration within the channel at earlier times. 

When the terms on the right-hand side of (3.1) are not negligible (to leading order), 
the equation is parabolic, and we assume that the mixing within each tank is sufficiently 
rapid that the problem may be treated as a boundary value problem, with the 
concentration at x = L being equal to the tank concentration over the whole cycle. 

The end conditions to be applied are therefore determined by the PCclet number 
based upon the steady part of the axial velocity, Ps = c2a2a(L - I)', which is an estimate 
of the ratio of the mean advected flux to the mean diffusive flux. We will assume that 
the same conditions may be applied to x = 1 as to x = L. When P, + 1 we impose 

8 =  L at x = L, 8 =  1 at x = I, for all t. ( 3 . 6 ~ )  

When P, % 1, the end conditions are 

8 = L  at x = L ,  8 = 1  at x=Z when (2n- l ) sc< t<2nn  (3.6b) 

for integer n,  i.e. during inflow; no end conditions can be applied during the outflow 
half of the cycle. Equations (3.1), (3.5) and (3.6) constitute the boundary value problem 
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for transport of solute in the purely wall-driven flow. We shall investigate the 
parametric extremes, expecting that for intermediate values of the parameters an 
intermediate level of dispersion will occur. Therefore, we solve the problem for 
P, < 1 in $4. The case P, % 1 will be treated in $5. 

4. Dispersion in a channel: small mean Peclet number 
We now examine dispersion when P, 4 1, and so R, = e2a2 4 1. We seek a regular 

series solution of the form (3.4) to the advection-diffusion equation (3.1) subject to the 
no-flux condition at the walls (3.5) and the fixed end-concentration condition (3.6a). 
The leading-order part of the concentration is equal to that when there is no wall 
motion (e  = 0), that is 

The equation for 0" is 
e o o  = x. (4.1) 

(4.2) (1 /CAT) (0;; + 0;;) - iOl1 = xuil 

subject to O i l = O  at Y , I = + ~ ,  P = O  at x = l , L ,  (4.3) 

which cannot be solved in closed form, but may be expressed as a Fourier series in Y,I. 
Substituting (2.15) into (4.2) leads to the solution 

where 

2p30. sinh /3 ao (- 1)" G(x; $") cosh nny 
D n=l ~ : ( n 2 n 2 + p 2 )  

sinh $%(x - I )  sinh @"(L - x) 
sinh $"(L - I )  -' sinh $,(L - I )  

0" = G(x;  $o) - x , 

G(x;~ , )  = X - L  

(4.4) 

(4.5) 

and $n = (2n2 + ,%)$, Re {@.,} > 0. We could go on to solve for OzO in the same way, 
but that is not necessary for calculating the mean relative increase in solute flux across 
a cross-section, 8: 

a = 2 s' (OEo + f Re {O; - o12crx@;l 6'')) dy + O(6).  
2 $=-I 

This integral may be evaluated by averaging the equation for OZo, 

across the cross-section : 

The expansion of the continuity equation (2.17) leads to 

24:' + u;1 = 0, 
u~"+u~O+iRe(u~l} = 0, 

(4.9) 
(4.10) 

which were used together with the boundary conditions on the flow to arrive at (4.8). 
Integrating (4.8) once with respect to x gives 

(OF+iRe{8:1})dy = Re{xui'011}dy+2A, (4.11) s' 7=-1 
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where A is a constant of integration. Comparison with (4.6) shows that 

9 = € 2 ~  + 0 ( € 4 ) .  (4.12) 

The value of A may be found by integrating (4.11) again and applying the end 
conditions (4.3) and 

= 0 at x = 1,L. (4.13) 

We obtain (4.14) 

which can be evaluated using (2.15) and (4.4). We can also show that A > 0 for all 
parameter values by using (4.2) to substitute for u:' in (4.14), yielding 

which may be integrated by parts (using the end conditions (4.3)) to obtain 

(4.15) 

(4.16) 

which is positive. Therefore the flow enhances the mean axial transport of solute when 
R& 1. 

After some calculation, it is found that 

a6u2 sinh p sinh p hn z 
n-l ( a 4 2  + n4n4) (a4 + n4n4) OD 9 = e2[;h,,+ 

where 

(4.18) 

The first term in (4.17) is the mean relative increase in solute flux for an inviscid fluid, 
which arises from axial advection and diffusion of solute at the cross-sectionally 
averaged concentration. It is useful to see how the distribution of the cross-sectionally 
averaged concentration depends upon a&L-0, as plotted in figure 3. Note that when 
a&L- I )  B 1, the cross-sectionally averaged concentration is linear, except for 
boundary layers imposed by our choice of end conditions. It may be shown that no 
solution of the advection-diffusion equation (with any end conditions) exists that is 
linear in x, for a viscous fluid. The second term is a sum of similar contributions from 
each Fourier component of the concentration. We may approximate h,  for II 2 1 by 

h, - Re {?( - I-$, ")}, 
L-1 

(4.19) 

because L-  I 9 1 and l$rnl > nn. Therefore, for a sufficiently long tube, each component 
of the sum in the second term will be much smaller than the corresponding component 
of the sum in the third term. 

The third term in (4.17) is the result of transverse diffusion along the lateral 
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X l L  

FIGURE 3. The variation in mean concentration with x, for various c&(L - r )  : (a) a& - r)  = 0.1 ; 
(b) 2.0; (c) 24.0. For all graphs L = 12, 1 = - 12; only the half 0 < x < L is depicted. 

concentration gradients produced by the shear. This part of the dispersion is similar to 
that found by Watson (1983) for a rigid channel. To see this, we need the result 
(obtained from (2.14)) that the leading-order pressure gradient in our problem is 

fi2 = -epa,r~~lcosh,!?/DI Re{expi[t+arg((1/D)cosh@')]}. (4.20) 

Watson found that for a flow with pressure gradient f i i  = - Pcosh t ,  the mean relative 
increase in solute flux is 

which may be written as 

(4.22) 
P2c2a4 sinh psinh a O0 

g$.=--...-- - c  
03p2v cosh pcosh p 12=1 (a"' + n4n4) (a4 + n4n4) ' 

n2n2 
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0 0.2 0.4 0.6 0.8 1.0 

ad( L - I )  
FIGURE 4. The variation in 9 with a&(L-I): (a) L = 12, 1 = - 12; (b) L = 16, I = -8. 

For both graphs e = 0.02, F = 1.0. 

In Watson’s problem, the pressure gradient is independent of x, whereas (4.20) is linear 
in x. However, if we substitute the longitudinally averaged square of the pressure 
gradient amplitude, 

Y (4.23) 
2 ,cosh/3coshp(L2+L1+P) 

OD 3 

into Watson’s result, in place of his P2, we obtain the third term in (4.17). It is not 
surprising that the average square pressure gradient should be used, for net 
conservation of solute over a period requires that W be independent of x. Thus, for a 
sufficiently long tube (i.e. one for which 7c2(L3 - P) 9 a&(L - I)’), the dispersion in 
a viscous fluid in a channel with oscillating walls is approximately the sum of that in 
an inviscid fluid and that produced in a viscous fluid in a rigid channel when the 
longitudinal average square pressure gradient is (4.23). The terms contributing to W are 
summed without apparent interaction, but we have calculated W only to leading order 
in s; it is likely that interaction between terms would contribute to higher-order 
corrections. -92 is plotted against a&(L - I )  (for two sets of values of L, I ,  with the same 
value of L - I )  in figure 4. 

A similar calculation for a cylindrical pipe of radius S ( 0  gives the result 

8a6cr2Z1(p) Il@) ; h:, W = e2[2$+2hj,+ D‘D n-l (a49 + h4,) (a4 + hi) 

where 

(4.25) 
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A, is the nth non-negative zero of the first-order Bessel function J,(A) (A, = 0), Z, is the 
modified Bessel function of order m, D' = ZO(/3)-2Zl(p), and II.' = (h2,+/3%);. 

The first term in (4.24) arises because the mean pipe area is x(Li'(0) = m:(l -tie2), 
so that when there is wall motion, diffusion due to the leading-order concentration 
gradient (6:O = 1) is a factor ie2 greater than when there is no wall motion. By contrast, 
the mean width of a two-dimensional channel is 2(a^($) = 2aOl so the diffusion due to 
0:O is independent of the wall motion. The remaining terms in (4.24) correspond to 
those in (4.17), which have been discussed above. 

Although we have omitted explicit expressions for eZ0 and higher-order terms, these 
have been calculated, and it is found that the condition that the series expansion be 
asymptotic is that = e2a2g(L - o2 $ 1. In the next section, we study the singular 
problem which arises when this condition is not satisfied. 

5. Dispersion in a channel: large mean Peclet number 
In the parameter regime examined so far, we have found that the solute distribution 

satisfies O(x, 7, t )  = x[ 1 + O(E)], where the wall-driven flow determines the correction 
terms. As a result, 9 is of order 2. When R, b 1 however, we find the concentration 
is not approximated to leading order by O(x, 7, t )  - x. 

Following Secomb, we write a2 = N2e-2(1+c), where c > 0, so that R, = N2e-2e+ co 
as e+O. For ease of calculation, we examine only the symmetric case, with the origin 
located at the midpoint of the channel. However, the results will be little altered in the 
case when the origin is not in the channel centre. It proves to be convenient to use the 
rescaled concentration 8 = OIL. The advection-diffusion equation in non-dimensional 
variables is 

where the function F(7, t)  is defined by (2.15). We may neglect diffusion, provided that 
the right-hand side of (5.1) remains much smaller than the left-hand side, i.e. that 
neither 8,, nor g7? becomes too large. Therefore, let us see how the concentration 
evolves (to leading order) when diffusion is neglected. We solve the initial value 
problem 

8, - x ( ~ / u  + a2F,) e', + u'FFB', = 0, (5.2) 

(5.3) 

(The initial time t = - x corresponds to the channel having minimum width.) There is 
a gradient discontinuity in the initial condition which is advected with the fluid in the 
absence of diffusion; diffusion would smooth the discontinuity, but the concentration 
profile would be only slightly modified during the first few oscillation cycles. 

Equations (5.1) and (5.2) may be solved using the method of characteristics, using 
(2.16) to substitute for F within the core, so that, neglecting terms of O(e4i), 

(5.44 

provided that the modulus of the right-hand side of (5.4 a) is less than 1. Otherwise, 

&x, q, t )  = sgn (XI- (5.4b) 

Contours of equal concentration are shown in figure 5 ,  for s2t = O(1) and for e2t + 1. 
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FIGURE 5. The long-time evolution of (equally spaced) concentration contours (only the quadrant 
0 < x < L, 0 < 7 < 1 is shown. (a) s2t = f ;  (b) 4; (c) 8. 

There is very little change in the calculated distribution from one cycle to the next, 
but we see that eventually the steady streaming causes large regions of uniform 
concentration to be set up within the core, separated by zones in which the 
concentration gradients are large, close to x = 0 and 7 = 0. In these zones, the 
assumption that diffusion is negligible has become invalid. We therefore undertake a 
full analysis of the O(1) solute distribution, taking account of diffusion, using the above 
results as a guide. 

They lead us to expect that an initially linear concentration profile will, over many 
cycles, be advected by the steady streaming until large concentration gradients are set 
up. Diffusion along these large gradients results, so that equilibrium is reached, at least 
as far as the O(1) steady term is concerned. (There will also be an oscillatory variation 
in the concentration at O(s), but we neglect this and higher-order corrections, as our 
main purpose is to determine 92.) The regions in which the equilibrium concentration 
gradient will be large appear (from figure 5)  to be a neighbourhood of x = 0 (where the 
axial velocity vanishes) and a neighbourhood of the centreline q = 0. We must also 
investigate the Stokes layers on the oscillating walls. _Away from these regions, in 
x > 0, the concentration is equal to that in the tank, i.e. 0 = 1. Similarly, for x < 0, the 
concentration is e" = - 1 away from the regions where the concentration gradient is 
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large. These conclusions will assist us in the analysis of the equilibrium distribution of 
solute. 

We must solve the advection-diffusion equation (5.1) subject to the boundary 
conditions at the walls - 

and suitable end conditions. From figure 5, we anticipate that the equilibrium solute 
distribution will be uniform in the region of x = L, except in the neighbourhood of 
y = 0 (and possibly the Stokes layers). Therefore, provided that the region of uniform 
concentration extends into the channel for a distance greater than a stroke length 
(which is O(eL) channel widths), the concentration at x = L will be 6 = 1 independently 
of time, except perhaps near 7 = 0 or 9 = 1, as mentioned above. 

We now use the symmetries of the problem (6 is odd in x, even in y) to restrict 
attention to the quadrant x > 0 , ~  > 0. The Stokes layer at 7 = 1 is of thickness O(el+'), 
so we introduce the Stokes-layer variable 5 = ~-('+')(1-7). The left-hand side of (5.1) 
is O(E), so in the Stokes layer at 7 = 1 the leading-order part of the concentration 
satisfies 

provided that e 2 ( l + ' ) 8 ~  < 1. We will assume that this last condition holds, and check 
later for consistency. Therefore, 8'' is a function of x only and so 8 : O  E 0 throughout 
the Stokes layer. As a result, the boundary condition on 8oo within the core is 

O , = O  at 7 = & 1  (5.5) 

8:; = 0 subject to @" = 0 at c =  0, (5.6) 

~ ; O - + O  as y+1. (5.7) 

Within the core, we use (2.15) and (2.16) to obtain the advection-diffusion equation 

(Terms in F which are O(e4) have been omitted from (5.8); they do not contribute to 
the leading-order steady concentration profile.) First, we assume that the right-hand 
side of (5.8) can be neglected, i.e. ~ ~ ~ ( 6 1 0  + 6:;) < 1. Substituting a series expansion 
for 8, we obtain at O(E) 

and the steady part at O(2) 
i@ - ix60 = 0, (5.9) 

5 .  - 
$c cos ny@ + $ Re(ix@> -- sin n q y  = 0. 

4n 
(5.10) 

8O0 is real, so 8' is also real, from (5.9). Hence the second term in (5.10) is zero. 
Therefore, the general solution of (5.10) subject to the matching condition (5.7) is 

8 O 0  = f(x sin ny) where f'(0) = 0. (5.11) 

The function f is to be determined from end conditions. 
In physical terms, 8 O 0  is constant on the streamlines of the steady-streaming flow. 

The steady streaming is directed into the channel at x = L, for 7 > +, carrying fluid at 
the end concentration @' = 1. Therefore 

J'(Lsinnp) = 1 for 1 > 7 > $, (5.12) 

and sof = 1. Thus, in the region in the quadrant x > 0 , ~  > 0 for which the right-hand 
side of (5.8) remains negligible, the leading-order concentration is 

oo0 = 1. (5.13) 
- 
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This solution breaks down close to x = 0, where the concentration is required to be 
zero because 8" is odd in x. Comparison of terms in (5.8) indicates the presence of a 
boundary layer at x = 0, of thickness O(c'), in which the concentration changes rapidly 
from 8" = 0 to 80' = 1 as x increases. Furthermore, the steady streaming advects 
the large concentration gradients around the corner (near the stagnation point 
x = 0, q = 0) into the region 7 = U(sc).  Thus a 'tongue' of fluid with concentration 
goo < 1 is advected along the centre of the channel; advection of lower-concentration 
fluid also caused such a tongue in the initial value problem considered earlier, whose 
long-time solution is depicted in figure 5. 

To analyse the boundary layer at x = 0, we introduce the scaled coordinate 

streaming tends to increase the time-averaged axial concentration gradient at x = 0, a 
process which is balanced by longitudinal diffusion within the boundary layer. From 
(5.8), the concentration satisfies 

<='  ,xs - ' (3v) iN = +x(3R, g)l. This scaling arises because the (Lagrangian) steady 

within the boundary layer close to x = 0. Provided that c2'q: 4 1, the leading-order 
concentration is determined from the U(s)  equation 

iJ11 - i @ O  = 0 
and the O ( 2 )  steady equation 

(5.15) 

$6 cos n7@0 + t Re{i@'} - (3/4n) sin nq6:o = @;. (5.16) 

The second term on the left-hand side of (5.16) vanishes as before, because 811 is real, 
so we must solve 

gcos n$7:0 - (l/n) sin nq8"; = @:, (5.17) 

subject to the conditions 

8 0 0 =  o at [=o; 800+1 as c+cc (5.18) 

and the matching condition (5.7). The change of variables 

r = [ s i n q ;  s = 1 +cosny 

reduces (5.17) to the one-dimensional diffusion equation, 
-00 - -00 

8 s  - o r , ,  

and the solution is 

(5.19) 

(5.20) 

(5.21) 

Clearly the matching condition (5.7) is satisfied by the solution (5.21). In addition, 
8";; = O(1) in the neighbourhood of y = 1, so c 2 c 1 + c ) 8 ~ ~  = O(c2) < 1 in this region, and 
the assumption leading to (5.6) is justified; the solution (5.21) holds within the Stokes 
layer near < = 0, 7 = 1. 

The approximation on which this solution is based becomes invalid when sec6ii 
becomes of order unity. This happens when y = U(cc) and 6 = O ( P ) ,  i.e. just outside 
the boundary layer at x = 0, in the tongue centred on q = 0. Close to the stagnation 
point x = 0, 7 = 0, the solute is advected around the corner. To see this, note that the 
stream-lines of the steady-streaming flow in the neighbourhood of the stagnation point 
satisfy xy = constant, to a first approximation. From (5.21) we see that, within the 
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neighbourhood, @' is proportional to xy, again to a first approximation. Therefore 8" 
is constant on the streamlines, which are symmetric under reflection in the line x = y. 
Hence the solute is advected around the corner without change of profile. This 
produces a concentration gradient discontinuity at y = 0, which will be smoothed by 
diffusion. However, the effect of this smoothing is only O ( 8 )  in the boundary layer 
adjoining x = 0. The diffusive smoothing produces an O(1) change in @"' only when 
x 2 O(1). Therefore we will use the boundary-layer solution to give the conditions as 
x + O  on the solution in the tongue. 

Advection of a boundary layer by steady streaming has been analysed previously. 
Lyne (1971), for example, studied unsteady flow in a curved pipe when R, %- 1, and 
found that centrifugal forces produce a steady secondary flow directed from the outer 
wall to the inner wall of the pipe; thin boundary layers are attached to the pipe wall, 
in which the vorticity gradients are confined. The uniform vorticity steady streaming 
in the core advects non-uniform vorticity from the boundary layer through 90" into a 
tongue on the plane of symmetry of the pipe. 

To formulate the problem in the tongue, we introduce the scaled transverse 
coordinate y = + 7 P ( 3 a $  N .  Substituting this into the advection-diffusion equation 
(5.8) and talung leading-order approximations to the trigonometric functions results in 
the equation for the concentration in the tongue 

x@'- y6: = &'+ (4eac /3N2v)  6$., (5.22) 

where the O(e) equation has been used to eliminate a term from the steady O(e2) 
equation, as before. The second term on the right-hand side of (5.22) is small for 
x % ec and may be neglected. If the matching between the boundary-layer solution 
(5.21) and the solution of (5.22) takes place at x = x, where 8 < x -4 1, the matching 
condition is 

$""x, 7)  = erf"x/l/8) xlrll. (5.23) 

We consider the whole tongue, which is symmetric about the line 7 = 0;  the symmetry 
condition is 

~ ? ( X , O )  = o for x > x. (5.24) 

The matching condition to the solution (5.13) is 

800(x,y)-+ 1 as y+ 03 for x > x. (5.25) 

By introducing the coordinatesp = ix2, q = xy, equation (5.22) may be transformed 
to the diffusion equation 

"00 - goo 
9 P  - 4P' 

The conditions (5.23H5.25) transform to 

@ O ( P , O )  = o for p >ix2, 
goo(;xz? 4) = erfKVd8) 1413, 

8oo(p,q)+ I as q/.\/2p+ co for p > $xz. 
The solution of (5.26)-(5.29) is 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

(5.30) 
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Reverting to ( x ,  7) coordinates, we obtain 

When x 9 x, (5.31) may be approximated by 

6’ “on ( x , y )  = +rerf(w){exp[ - (? -Z) l+exp[  - ? + L y ] } d ~ .  (5.32) 
KZX 0 K X  4 2  K X  4 2  

Equation (5.32) describes the solute distribution in the tongue for x 8. A reasonable 
idea of the concentration may be obtained by evaluating the integral at y = 0, where 
the concentration is minimized with respect to y. This leads to 

(5.33) 

The second term decays algebraically (like x-l)  as x becomes large and, for a 
sufficiently long channel, the concentration in the tongue is close to that in the tank at 
x = L. In a cylindrical pipe, the concentration defect in the tongue falls off 
exponentially with x. 

We may evaluate the relative increase in solute flux across the cross-section x = 0 
using (5 .21) :  

Jnn(x, 01 = 1 - (2/7c) t a r 1  ( 2 / x x ) .  

The corresponding result for a cylindrical pipe is 

(5.34) 

(5.35) 

Clearly, &? increases without limit as 4 increases. The reason for this is the increasingly 
steep mean axial concentration gradient close to x = 0, which is caused by advection 
with the steady streaming, resulting in an enhanced diffusion across the plane x = 0. 
The tongue on 7 = 0 makes a negligible contribution to the solute flux across x = 0. 

It has been convenient to take 1 = - L and use the symmetries of the problem to find 
the solution. However, we see that the axial concentration boundary layer and the 
tongue on the centreline are the only places where the concentration differs from that 
at the channel ends. Therefore it may be concluded that, provided I ,  L are located well 
away from x = 0, there will be an axial boundary layer in the neighbourhood of 
x = 0 and a tongue on the centreline, irrespective of the precise location of 1 and L. 
Except for the tongue, it is as if the end conditions have been brought into the channel 
by steady streaming, so that they determine the concentration at either side of the 
central layer. If 1 + -L ,  we may change variables to reduce the problem to the 
symmetric case: let the rescaled concentration be 6 = 2/(L-E)(O-B(L+E)). (This 
rescaling is a slight generalization of that used in the symmetric case.) Then all of the 
working goes through as before, except that (5.34) is replaced by the more general 

&?=- d 3  1 €(L - I )  a& - I + O(E). 
x(279 

(5.36) 
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For a cylindrical pipe, (5.35) is replaced by 
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Finally, let us consider the problem when P, @ 1, but R, = O(1). For R, 9 1 we have 
found that, with the axial steady streaming directed into the channel in the part of the 
core adjacent to the walls and out of the channel elsewhere, an axial concentration 
boundary layer develops close to x = 0. The boundary-layer thickness (relative to 
the channel length) is O(P&. Secomb (1978) computed the steady streaming when 
R, = O(1); the results are shown in figure 6 of his paper. He found that the profile of the 
steady-streaming flow when R, = O( 1) is similar in shape to (and of the same order of 
magnitude as) the case R, 9 1. The axial flow is again directed into the channel 
adjacent to the walls and out of the channel elsewhere. 

Therefore, although it has been convenient (from an algebraic point of view) to study 
the case R, % 1, we expect that the same physical processes operate when R, = O(1), 
provided that P, 9 1. Advection is the dominant mechanism of transport in most of the 
channel, but there is a concentration boundary layer of thickness O(@) in the region 
where the axial velocity vanishes. Transport is markedly enhancfd by the wall motion, 
for the relative increase in solute flux across x = 0 is 9 = O(Ps). 

6. Application to high-frequency ventilation (HFV) 
We have shown that transverse oscillation of the walls of a straight channel (or pipe 

of circular cross-section) induces a flow which augments the mean axial solute 
transport. In par;ticular, when the fluid is viscous and R, $ 1, the transport is enhanced 
by a factor O(P,) 9 1. Solute is transported within the channel mainly by advection, 
which dominates diffusion over most of the channel. The steady streaming draws solute 
from the tanks towards the region where the axial advection vanishes, resulting in a 
thin boundary layer in which the axial concentration gradient is large. Diffusion down 
the large concentration gradient produces a large solute flux. The argument presented 
at the end of 95 indicates that the same physical processes operate for R, = 0(1), 
provided that P, % 1. 

When P, 6 1, the analysis of $4 indicates that the mean increase in axial solute flux 
is O(e2) < 1. Diffusion dominates advection in this parameter range, so that, to leading 
order in e, the concentration is unchanged by the wall motion. Advection produces an 
oscillatory change in the concentration of O(s), and a mean change of O(e2). These 
changes lead to an O(e2) enhancement in mean solute flux. 

The model problem was motivated by the need to understand the mechanisms 
responsible for gas transport in the human lung during HFV. We now examine the 
predictions of the model problem for the parameter range relevant to the human lung. 
A typical frequency is 15 Hz; a typical tidal volume is 50 ml. Hughes, Hoppin & Mead 
(1972) inflated and deflated excised dog lungs, and found that the percentage change 
in airway diameter (and length) is proportional to the cube root of the percentage 
change in lung volume, with little dependence upon the airway generation. Given that 
the total volume of a human lung (at 75 % of total lung capacity) is 4800 ml (Weibel 
1963), we will therefore assume that the airway diameter varies by a factor (&$ during 
a cycle; this means that the relative amplitude of the wall oscillation is e E 0.1. We 
consider the transport of oxygen in the airways (the transport of carbon dioxide may 
be considered similarly). The molecular diffusivity of oxygen in dry air at 20 "C is 
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K = 0.18 cm2/s; the kinematic viscosity of dry air at 20 "C is Y = 0.15 cm2/s. Therefore 
the Schmidt number is cr z 0.83. 

= a, L be the airway radius and length (in cm) respectively. Then the 
steady-streaming Peclet number is 

(6.1) 

(6.2) 
We use the measurements made by Weibel (1963) (incorporated into his symmetric 
lung model) to determine the range of values of R, and I?, in the human lung. 

The trachea (generation 0) is the largest airway, with radius a, = 0.9 cm and length 
= 12.0 cm. Clearly, P, 9 R, > 1 for the trachea, so the parameter regime is that 

studied in 95, but there is no location where the flow rate is zero, so if the present 
mechanism were the only one giving rise to enhanced mixing, all gas would be advected 
by the steady streaming through to the smaller airways. The same arguments applies 
in those successive generations for which P, 9 1. When P, = O( l), diffusion and 
advection by steady streaming are of the same order of magnitude. P, x 3.03 for 
airways of generation 7 in the Weibel model; P, is larger for the larger airways and 
smaller for the smaller airways. Therefore, the mean oxygen concentration would be 
expected to be uniform in the larger airways, but would fall in the smaller airways, 
because the steady streaming is not sufficiently strong to advect fresh gas into these 
airways faster than diffusion transports the oxygen to the alveoli. Nevertheless, if we 
suppose that the concentration is uniform in the generations 1-7, we find that the 
steady streaming would, if there were no other mechanism, transport fresh gas a 
distance of 23.42 cm, which is 86% of the total path length from the trachea to the 
alveoli in Weibel's model lung. This result may be extended to more general flows for 
which the Pklet number based upon the longitudinal component of the steady 
streaming is large in the largest airways, because the steady streaming advects fresh gas 
towards the periphery of the lung. 

In the smaller airways, there are other mechanisms acting to enhance longitudinal 
mixing in the lung. The shear dispersion analysed for pressure-driven oscillatory flow 
in a straight tube by, for example, Watson (1983) is one example. For large a 
and cr = 1, Watson's theory predicts an enhanced transport rate, B, proportional to 
K(L,/a)'a, where L, is the mean axial displacement of a fluid element during the 
oscillation. One can regard dispersion in an airway in which the concentration is non- 
uniform (i.e. generation 8 and smaller) as being due to a pressure-driven flow 
superimposed on the flow caused by the wall motion. Hydon (1991) found that the 
contribution to dispersion due to the pressure-driven part of the flow (determined by 
Watson) is larger in magnitude than the contribution due to the wall motion. However, 
the two mechanisms are not purely additive, and the eventual enhancement of 
dispersion depends crucially on the phase relation between the wall motion and the 
pressure gradient (cf. Dragon & Grotberg 1991). 

Furthermore, the airways are not long straight pipes, but suffer repeated 
bifurcations. These can generate additional steady-streaming effects (Haselton & 
Scherer 1982), and significantly influence the cross-stream mixing because of the 
secondary motions that are set up (Schroter & Sudlow 1969; Shapiro & Kamm 1989). 
There may also be turbulence in the larger airways, generated either by the airway 
geometry or by the mechanical method of forcing the oscillatory flow (e.g. a jet 
ventilator : Kamm, Bullister & Keramidas 1986). In general, mechanisms such as these 

Let a, and 

P, = e 2 a 2 ~ L 2  = e2L2w/K w 5.24L2 

R, = 2a' = e2a: w / v  z 6.28 a:. 

and the steady-streaming Reynolds number is 
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which enhance transverse mixing tend to diminish the longitudinal dispersion (an 
exception occurs when there is resonance between the period of the axial oscillation 
and the secondary recycling time: Pedley & Kamm 1988; Sharp et al. 1991). The 
consequence would be to increase the importance of steady streaming. However, it is 
clear that the significance of the present contribution is more in the identification of a 
novel mechanism for the enhancement of longitudinal mass transport in oscillatory 
flow than in explaining standard experiments on HFV. 

Finally, it is worth noting that there is at least one other problem arising in nature 
to which the present work (or a slight modification of it) may be applicable: insect 
respiration. Weis-Fogh (1964) studied diffusion in insect wing muscle, which consumes 
oxygen at a rate which is higher than any other muscle. Oxygen is supplied to this 
muscle by a long straight primary trachea, which has a number of secondary trachea 
branching off it (mainly at right angles). Weis-Fogh calculated steady-state diffusion 
rates in the wing muscle of various insects, but concluded that in at least one insect, the 
giant belostomid bug Lethocerus uhleri, the dimensions of the wing muscle are 
inconsistent with the calculated rate of oxygen transport by diffusion. The walls of the 
tracheae are surrounded by muscle fibres, which contract and relax at high frequency 
during flight. It is therefore to be expected that the wall-driven flow analysed by 
Secomb (1978) will occur in the tracheae and, if P, is sufficiently large, fresh gas may 
be brought into the airways by steady streaming. 

During the course of this work P.E.H. was supported by an SERC CASE 
studentship in the Department of Applied Mathematics and Theoretical Physics, 
Cambridge University, in conjunction with Addenbrookes Hospital. We are grateful to 
the referees for their comments and suggestions. 
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